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Fig. 11. Computed mode conversion of the 40-dB taper in the
vicinity of the cutoff frequency of the H02 mode.

equations available, such an optimization has to be performed

numerically. This is no trivial problem because of the severe

constraint that, at least for manufacturing reasons, the slope

should be continuous and monotonic. Nevertheless, with

available computer programs for synthesis and analysis

combined, the design of’ tapers for any mode discrimination

and ratios az/al can be accomplished in a short time if an

interactive operating mode is possible.

Designed with this method, various 40-dB tapers having a

small end diameter of 0.375 in and a large end diameter of

2.0 in were built. The HiIz level found in a preliminary test

agrees with the computed results and is below — 40 dB. More-

over, it has been found that the mode conversion at cutoff

of the spurious mode does not show any anomalies.
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Calculation of Inductance of Finite-Length Strips

and its

A.

Variation with Frequency

GOPINATH AND P. SILVESTER

Absfracf—The inductances of finite-length strips over a ground
plane are calculated by the Galerkin method. The formulation is in
terms of the quasi-static skm-eff ect equation. The numerical tech-
nique used is discussed and sample results are presented.
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1. INTRODUCTION

T

HE CALCULATION of inductance of finite-length

conducting strips is currently of some interest. The

strips concerned, for example, could take the form of

interconnections between active and passive elements in

integrated circuits or alternatively, guiding structures such as

microstrip lines in microwave integrated-circuit modules. In

general, semiempirical formulas of Grover [1] are used, but

these are not always satisfactory, nor are they compre-

hensive.

The capacitances associated with such structures have

been calculated by several authors [2 ]– [4] and use, among
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others, the moment method or a more generalized form of the

Galerkin method [5]. These calculations are based on the

assumption that the charge, a scalar quantity, is unknown and

can be approximated by an expansion in a trial function set.

Since the potential is known, the integral equation with the

Green’s function may then be used to solve the problem. The

capacitance thus calculated is independent of frequency.

A similar technique, however, is not always applicable for

the inductance calculation. The current distribution is a vec-

tor and a function of frequency. The inductance decreases to

a limited extent with frequency, and any formulation should

take account of this variation. While the specific case of

high-frequency inductance is of interest to microwave engi-

neers for microstrip lines, the present paper considers the

more general formulation which evaluates inductance of

strips at any frequency of interest.

The integro-differential equation based on skin effect is

derived and the technique of numerical solution by the

Galerkin method is discussed. In the course of this work a

method for the choice of suitable basis functions, using the

generalized matrix inversion concept, was developed, and this

is also discussed briefly. A computer program was written for

the calculation of inductance of finite-length strips over a

ground plane and this corresponds to the case of microstrip

lines. It is known that the presence of the dielectric substrate

in these lines does not affect the longitudinal current distribu-

tion associated with the inductance [6], [7]. The paper con-

cludes with some numerical examples of the inductance of

finite-length strip lines over a ground plane.

II. FORMULATION OF PROBLEM

The problem is formulated in the orthodox quasi-static

skin-effect form [8], and hence leads to estimates of induc-

tance and inductance decrement with frequency. Retardation

effects are neglected. A typical case considered is shown in

Fig. 1, where w is the width of the strip and h the spacing to

the ground plane.

In general, the magnetic vector potential is given by

A=/.Lo sG7 dV

where G is the Green’s function and is given by

1
G=

4T<(X – *J2 + (y – yij)’ + (z = 20)2

(1)

for nonmagnetic substrates.

3 is the current density distribution on the strip: the un-

known time-varying quantity.

For magnetic substrates, the Green’s function would

require to take account of the images set up.

The electric field now is

(2)

where @ is the impressed voltage on the strip which causes

current to flow.

Also, from Ohm’s law,

Fig. 1. Typical geometry of strip analyzed. w = width of strip;
h = spacing to ground plane.

where u is the s$ip ccmductivity. Substituting from (1) and

(3), (2) becomes

(4)

This is the vector integro-differential skin-effect equation; its

scalar component parts are all formally identical. The un-

known current density distribution 7 is to be evaluated for a

given geometry and excitation r#J. When this is solved, the

inductance may be calculated from the following relation-

ships:

[s 1
2

7 dV = 12. (6)

To solve (4), the homogeneous solutions for 7 with the

right-hand side set to zero, an eigenvalue problem, are

evaluated. Next, Laplace’s equation is solved for I#Jover the

strip or strips with the given terminal excitation, and sub-

sequently the unknown coefficients associated with the eigen-

modes of the homogeneous problem are evaluated for the

given excitation +, and hence known V~. When the current

distribution is known, it is a simple matter to evaluate the

inductance.

III. METHOD OF NUMERICAL SOLUTION

For convenience, the thickness of the strip t is assumed to

be small compared with skin depth at the highest frequency

of interest, and therefore variation of the current in the thick-

ness may be neglected. The volume integrals hence become

surface integrals, and the surface become line integrals. The

notation of V and .S is, however, retained. We also assume

that the strips lie in the planes defined by z = constant, and

therefore the current density 7 is now a two-component vector

involving J= and Ju only, related through the divergence

equation

g+$=o. (7)

Note that the divergence equation neglects the charge term

as only quasistatic ccmditions are considered. Further, the7=UE (3)
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current I should satisfy the boundary conditions, i.e., the

normal componet of current must be zero at the strip edges.

Suppose a basis set of functions {~~ } is obtained such that

each and every member satisfies (7) and the boundary condi-

tions, The current 7 now may be approximated by 77 which

is expanded in terms of this basis:

&m=~ai~i (8)
i= 1

where ai are the unknown coefficients. Note that each com-

ponent of {~i ) is a vector representing Js and Ju, and is a

function of x and y.

The approximation 77 is substituted in the homogeneous

equation obtained by setting the right-hand side of (4) to

zero. Taking the scalar product of this equation with ~1,
f,, . . . , r. results in a set of equations of the form

~ ai(f @i dv, ?.)= h k ai(~i, ~~),
;= 1

k=l,2, ... ,n (9a)

where the scalar product is defined by

——
(x, Y) = p.w. (9b)

This is a homogeneous equation and when the integrals

are evaluated results in a matrix eigenvalue of the form

Pa = AQa. (9C)

Both P and Q are symmetric positive-definite matrices.

Numerical evaluation of the eigenvalues and vectors may

then be performed by suitable algorithms.

Suppose the solution is given by

w = A Cjitj (lo)
&1

where

{j~ } eigenvector set;
{Aj ] corresponding eigenvalue set;

Ci unknown coefficients associated with the ~j.

Substituting (10) in (4) results in the following equation:

The impressed voltage ~ satisfies Laplace’s equation:

V24 = ()

and hence is known for given terminal excitation.

To solve for c,, the scalar product of (10) is taken with the

eigenvectors *j to give

~ (1 + j“u/.4~j)6j(jj, jlc) = ‘“(v@, Zlc),
j=l

k=l,2, . . ..n.

However, the ~j form an orthogonal set, and hence

(12)

From this, the coefficients Cj, which are complex, may be

evaluated, and therefore the current 7 is known. The stored

energy and the inductance may be calculated from (5) and

(6) .

IV. CHOICE OF BASIS FUNCTION SET

The double volumetric integrals of (9) require to be per-

formed over, say, L-shaped strips. One also has to contend

with singularities as a result of the three-dimensional Green’s

function G. Spatial discretization of the strip or strips into

rectangular elements facilitates the evaluation of the integrals

and permits the elimination of the singularity [5]. Thus local

basis functions for the current density are defined over each

element (zero outside), and these have to satisfy the diver-

gence condition and the element boundary conditions.

The procedure followed here is based on the general

mathematical techniques published elsewhere [9], and the

results are outlined briefly. Suppose over any element the

current is expanded as

~ z ~ = 4rJ. + q/Ju (13)

where G and G are unit vectors in the x and y directions and

Jz = ~ ~ifi(%, y)
*

(14)

where {fi ) is the set of bivariate polynomials: 1, x, y, X2,

Xy, y%,..., etc., complete to degree, say, ndeg’, and pi and qi

are the unknown coefficients.

Substituting these expansions in the divergence equation

(7) and equating coefficients of like polynomials, @i and qi

are related. From this relationship, the current may now be

expanded in terms of a modified basis {~;) ; each ~t is a vector

and satisfies the divergence condition. It can be shown that

{~i } is given by

& $2 i3 i4 &

Jcl Oyx O

J, O –1 o –y –x

Therefore, the current may

~6 t7 ~8 t9

Y2 2xy X2 o, etc.

o – Y2 – 2xy – %2

now be expanded as

(15)
i

where bi are the unknown coefficients. Note that in satisfy-

ing the divergence equation, the number of unknowns

per element has been reduced from (nd.~+ 1) (ndw+ 2) to

(~d,g+ 1) (ndm+4)/z.

It is now necessary to impose boundary conditions on this

expansion of 7. Since local basis functions are used, inter-

element conditions require continuity of both components of

current, and at the strip edge the normal component is zero.

At the inflow and outflow edges no conditions are imposed at

this stage, as the necessary conditions are set by the right-

hand side of (4) by V@.

The continuity of current is rigidly enforced at the com-

mon boundaries. If the basis set has the highest degree given

by ?’Zd.., then rid..+ 1 conditions specify the continuity of

each component entirely on any one boundary. Thus for

example, at the boundary between elements 1 and 2, the
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continuity of J. is ensured by

(R, (J.1 – J.2)) = o (16a)

where R is given by 1, x, . . 0 , %n@ or by 1, y, . . . , Y’WX,

if the boundary is parallel to the x or y axis, respectively, and

the scalar product is defined by

(A,l?) = plm.
1,

(16b)

The matrix equation thus obtained for the common bound-

aries may be rectangular or, if square, may have a rank less

than the number of unknowns. If, however, this is not the

case, the existing degrees of freedom have all been utilized in

satisfying these conditions, and therefore the problem re-

quires a larger number of trial functions. Using the concept

of weak generalized inverse (see the Appendix), a null vector

set can be obtained from the matrix equation, which set now

satisfies the common boundary conditions at the expense of a

reduction of the degrees of freedom. This null vector set is

now used as the new basis set for the expansion of 7.

The strip-edge boundary conditions are next imposed,

i.e., the normal component of current is zero, or in general,

B~ = g. (17)

This may be satisfied by minimizing the functional
.—

F = (BW, TV) – 2(g, ~) (18)

where the inner product, defined in (16 b), is carried out piece-

wise over the relevant boundaries and the minimization is

over the unknown coefficients of the basis set.

Since the operator B is not necessarily positive definite,

‘(minimization” of F by the usual method, i.e., setting

~F/dsi = O, .S; are the unknown coefficients, will give a matrix

equation, the solution of which will not necessarily satisfy

boundary conditions. It then becomes necessary to examine

the diagonal of the matrix generated by the minimization

procedure and to eliminate those equations which do not

produce a true minimum, i.e., diagonal terms with zero or

negative values. An alternative is to specify a least-squares

fit which does not suffer from this difficulty. This takes the

form of minimizing

v = 11~~– g[l, on an LZ norm. (19)

For the currents at the strip edge, g is zero, the least-

squares minimization is easily imposed, and the null vector

set obtained as a solution of the resulting matrix equation

satisfies the edge conditions. Thus if the vector set which

satisfies common boundaries is used here, the new null set

satisfies both conditions, and also the divergence condition,

and forms the basis {.?i }.

The formulation of the problem in the above form and its

subsequent numerical solution has the limitation that it re-

quires all the strip elements to be rectangles, and preferably

with sides parallel to the axes. As the method stands, it is

also not possible to evaluate the inductance of lengths of

strips connected to semi-infinite lines. However, it is expected

that this last limitation can be removed by the use of basis

functions defined on a semi-infinite strip and corresponding

modifications to the computer program.

V. NUMERICAL IMPLEMENTATION AND RESULTS

A computer program for the calculation of the inductance

of finite-length strip lines over a ground plane has been writ-

ten, and results obtained for two different

presented here.

A. Com@dational Sequence in the Calculation
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geometries are

The geometry of the problem and associated discretization

of the strips into rectangular elements, together with the

degree of polynomial of expansion functions, form the input

data to the computer program. The calculation of the in-

ductance may be divided into three parts: the solution of the

eigenproblem of (9), the solution of Laplace’s equation for the

impressed potential O, and, finally, the calculation of the

current distribution for the particular frequency, from (12),

and the estimation of inductance of the structure based on

(5) and (6). The computer program follows this sequence of

calculation.

The unknown current distribution is expanded in the

polynomial set of (15) and the interelement boundary condi-

tions, continuity of Ja and Jv, are rigidly enforced by means

of equations of the form of (16) to give a matrix equation.

Using the generalized matrix inverse (see the Appendix), the

null set extracted from this matrix equation now is a combina-

tion of the original basis set, which satisfies the interelement

conditions. This null set is used as an expansion basis to

satisfy the homogeneous boundary conditions at the edge by

means of (19). Computationally, it is convenient to use the

original basis set in the homogeneous equation to setup the

matrix, and then post and premultiply the matrix thus ob-

tained by the null set and its transpose, respectively. The null

set extracted from this final matrix equation now satisfies all

boundary conditions. The inner-product line integrals in

these equations are evaluated by Gaussian quadrature, with

an adequate number of points. The null set finally obtained

above is used in the eigenproblem of (9), and, here also, the

original basis evaluates the matrices and subsequently these

are post and premultiplied by the null set to give the matrix

equation (9c). The integrals of (9) are also evaluated by

Gaussian quadrature in two dimensions, and the singularity

due to the Green’s function is eliminated by the technique

described elsewhere [5]. The evaluation of the eigenvalues

and vectors of (9c) is by standard subroutines: reduction of Q

by Choleslci decomposition to LLT, and the pre and post-

multiplication of P by L–l and (L~)–l, respectively; the

Householder tridiagonalization of L–lPL–T, and the evalua-

tion of the eigenvalues by bisection using the Sturm se-

quence; and, finally, the evaluation of the eigenvectors by

iteration in the tridiagonal matrix and their subsequent

inverse Householder transformation and restoration to the

original matrix. The eigenvalues and vectors thus obtained

are stored.

The Laplace equation is next solved, discretized with the

same number of rectangular elements as above. Here, @ is

approximated in an expansion in the bivariate polynomial set

of (14) of degree one greater than used in the eigenproblem in

the expansion of the approximation for 7, as V@ is then in the

same vector space as the approximation for 7. The interele-

ment boundary conditions are first specified (continuity of @,

and its normal derivative) and then the homogeneous condi-

tions (the Neumann condition &$/&z) at the strip edge and

the end conditions are next imposed. The end conditions de-

termine the inflow and outflow of the current, and thus are

governed by geometry of the problem, but within these con-

straints may be arbitrary. The null set thus obtained is used

as the basis for@ in the minimization of the functional

FL = @@, V@)
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Frequency +

Big. 2. Variation of inductance with frequency for a straight strip of
length 2.0 m, w=l.O m, w/lz=l.0, ground plane k, p=l.721X10–e
Q. m, and u= tip. Division into two rectangles.

where the inner product is defined by (9 b). Since the Neu-

mann condition &3/13n is “natural” to this functional and auto-

matically satisfied, this need not be imposed, nor is it neces-

sary to impose the continuity of the normal derivative of @

at the interelement boundary.

With the results of these two parts of the program available,

the current distribution is evaluated through (12) at the fre-

quency of interest, and the stored energy integral of (5) is also

evaluated. Note that the m,atrix P in (9c) is the stored energy

integral in this method, and using the new known coefficients

(which will be complex, in general) of the current expansion

set, the evaluation involves just two (complex) matrix multi-

plications (premultiply P by the conjugate coefficient vector

and then postmultiply the resultant by the coefficient vector).

The current 1 is then evaluated to give the inductance.

B. Examples

The first test problem considered a straight finite-length

line over a ground plane of length 2.0 units (meters) for a

width to height ratio (w/h) of 1.0. Fig. 2 shows the variation

of inductance with frequency. Since the strip thickness is as-

sumed to be small, the conductivity used is in mhos and equal

to the ratio of thickness to resistivity in (4). Changing a (or

thickness) results in a frequency variation whose pattern re-

mains the same, but starts at a different frequency position,

and this is also illustrated in Fig. 2. Note that changing the

conductivity does not change the dc or high-frequency value

of inductance. These results were obtained with the line

divided into two rectangles. Increasing the number of

rectangles from two to four results in a very small change in

the results, as shown in Table 1. All these results were com-

puted with polynomials up to quadratics using Gauss-

Legendre three-point quadrature formulas for numerical

integration.

Increasing the line length from 2 units to 16 units for

w/h = 1.0 shows the asymptotic approach of the calculated

high-frequency inductance to the infinite-length strip induc-

tance in Fig. 3. It is noted that this is rather slow, but

illustrates the physical behavior of the line. Other numerical

results on strips of different w/k have also been obtained, and

these will be discussed in Section V-C.

Calculations for a right-angle corner were also performed

for three values of wJ/lz with different length arms. These were

obtained with a subdivision of the strip into eight rectangles

using expansions UP to quadratic polynomials. The variation

TABLE I

COMPARISON OF CALcuLALEn INDUCTANCE OF A STRAIGHT STRIP OVER
GROUND PLANE DIVIDED INTO Two AND FOUR RECTANGLES

Frequency Inductance in nanohenries
in Hz 2 rectangle subdivision 4 rectangle subdivision

0.0 633.24 636.64

1.0 633.24 636.64

5.0 633.24 636.63

10 633.22 636,62

15 633.20 636.59

102 631.43 634.63

103 612.84 612.69

104 610,53 608.47

105 610.50 608,42

Note. w/h= l.O; w=l m; length =2.O m; P= 1.721X10-S f2. m; strip
thickness t = 10–4 m; c= t/P; ground-plane spacing= h.

of the inductance with frequency is also obtained and shown

in Fig. 4 for w/lz = 1.0 and each arm of length 2.0. Table II

shows the variation of inductance with wS/h and for two values

of arm lengths.

The computer program is capable of evaluating arbitrary-

shaped strips over a ground plane which can be subdivided

into rectangles up to a maximum of ten rectangles with quad-

ratic polynomials. The strips, however, require to lie in the

z = constant planes.

C. Comparison with Known Results

The inductance of finite straight lengths of a strip over a

ground plane can be estimated from Grover [1]. Table III

shows a comparison between our calculated dc values for a

length 8 m long, w = 1.0 m, and three values of h: 2.0, 1.0, and

0.5 m, corresponding to w/h ratios of 0.5, 1.0, and 2,0, with

those of Grover, and the discrepancy at worst is 1.8 percent.

No published data exist for the inductance of strips in the

form of L, but it is expected that the results are within 2-

percent accuracy.

VI. CONCLUSIONS

An integro-differential skin-effect formulation was used to

evaluate inductance of arbitrary-shaped finite-length con-

ducting strips over a ground plane. The comparison between

calculated and known results shows good agreement. The

computer program written in Fortran is capable of handling

up to a maximum of ten rectangular subdivisions with a quad-

ratic expansion basis. Other geometries of strips over ground

planes can also be examined with this program, provided only

that the strip or strips lie in z = constant planes and can be

subdivided into rectangular elements.

APPENDIX

Let A be an m Xn matrix of rank r. Gaussian elimination

of the elements of A is carried out with interchanges for rows

and columns as needed until only zero pivots remain. Then

matrix equation becomes

‘X=[m’‘2’[::1=K]‘f ’20)



GOPINATH AND SILVESTER : INDUCTANCE 0S FINITE-LENGTH STRIPS

$

k

L

~ 450
i
G

F-G---’”’”;

0 20 40 60 80 100 120 140 160 —
len@ of strm m rnetres

Fig. 3. High-frequency inductance per meter plotted against the total
length of line showing asymptotic approach to the high-frequency
inductance per meter of an infinite line. w = 1.0 m; w/h= 1,0: xround-
plane spacing = h.

1Soo[

4
I ,

10 10’ 10’
%equency;“ H.

Fig. 4. Frequency variation of finite-length strip in the shape of an L
(right-angle bend). w= 1.0; zv/h = 1.0; length of arms la= 2.0 m.
Subdivision into eight rectangles; expansion polynomials up to
quadratics.

TABLE II

INDUCTANCE OI? RIGHT-ANGLE BEND

W!h La in m
‘d. c.

in nH ‘hf. in nlI

0.5 1.0 988.9 934.4

2.0 2037. 1960.

1.0 1.0 887,7 842.6

2.0 1778. 1710.

2,0 1.0 726.2 692.8

2.0 1408. 1347,

Note: w = 1.0 m; length of arm= 1.; Ld. is the total induc~nce at zero
frequency value; Lhf is the high frequency; ground-plane spacing= h.

Hence,

Xl = U1–lL1–lfl – UI–l UZXZ

fz = LtL1–lfl. (21)

Therefore,

x= A+j+Nz (22)
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TABLE III

COMPARISON BETWEEN GROVER’S [1] DC INDUCTANCE ESTIMATE AND
CALCULATED VALUES FOR A STRAIGHT FINITE-LENGTH STRIP

W = 1.0 m OVER A GROUNn-PLANE SPACING k

wlh 9. Grover’s result Inductance in nano-
Iienries calculated

by this method

1.0 2.Om 635.74 nH 636.6

1.0 8m 3166.24 3211.

2.0 81Q 2319.52 2356.

0,5 8Jn 3926.96 3969

where A+ and N are the row–column reinterchanged forms:

A+ z=

[ ‘1-:’-’:1 ‘=ru:u’l
and n-r components of .z are arbitrary.

The columns of the matrix N form a basis in the null space

of the matrix A, and matrix A+ satisfies the equations

Hence, the first term of the right side of (22) specifies the

inhomogeneous solution of (20), while the second term pro-

vides all possible homogeneous solutions.
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Effect of Upper Sideband Impedance on a Lower

Sideband Up-Converter

W. ALAN DAVIS AND PETER J. KHAN

Abstract—An analysis is given of a lower sideband up-converter
which includes a finite circuit reactance X83 at the upper sideband
frequency, in addition to the circuit impedances at the input signal
and output lower sideband frequencies.

The expressions developed for the gain, gain sensitivity to pump
power variation, and noise figure show the extent to which gain and
gain sensitivity decrease, and noise figure increases when X83 is
finite, as compared to the case when X83 is infinite. For a simple cir-
cuit configuration the gain-bandwidth product changes markedly
when Xa$ is small at the center frequency. In addition, when second-
harmonic pump power is allowed to flow through the vsractor diode,
the performance of the lower sideband up-converter can be improved.

I. INTRODUCTION

T

HE lower sideband up-converter (LSUC) has been

shown to have significant advantages over the reflec-

tion-type amplifier for low-noise receiver applications

[1]. These advantages include a greater gain-bandwidth

product, reduced gain sensitivity to pump power variations

(at the expense of a very slight increase in noise figure and an

output at an elevated frequency which limits input to low

microwave frequencies), and elimination of the need for a

circulator, which is also advantageous in cryogenic or minia-

turized applications.

A significant problem in LSUC design has been the propa-

gation of the upper sideband frequency; this is usually unde-

sirable because power dissipation at this frequency in the

diode and in the circuit resistances gives rise to degenerative

feedback. A consequence is that the resulting induced positive

resistance in the signal circuit subtracts from the parametri-

cally y generated negative resistance and reduces the gain.

Several authors have considered analytically the effect of

upper sideband propagation in an LSUC. However, in most
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cases these authors have usecf a representation of the reverse-

biased varactor-diode equivalent circuit consisting of a re-

sistance and a variable capacitance in parallel [2], [3] or a

lossless capacitance [4]. Although this simplifies the mathe-

matics considerably, it yields significant inaccuracy when

applied to multisideband circuits, since it leads to the errone-

ous conclusion that power dissipation in the diode can be

avoided at harmonic sideband frequencies by the presence of

a short circuit connected across the diode terminals. A more

accurate approach, based upon matrix manipulation, has

been used by Ernst [5] and by Howson and Smith [6], who

carry out a general analysis of a multiple-sideband parametric

network, using a diode representation consisting of a re-

sistance in series with the variable capacitance. However, the

work of Ernst is restricted to parametric amplifiers, while

Howson and Smith consider only the multisideband converter

having an output at the upper sideband frequency.

In most practical LSUC’S, the upper sideband and the

harmonic-sideband circuits consist of the diode series resis-

tance R, together with a reactance determined by the diode

mount structure and the position of the pump, signal input,

and lower sideband output filters. Loading of these sidebands

with any resistance other than that resulting from the diode,

transmission line, or filter losses is attainable only at the ex-

pense of considerable increase in circuit complexity.

This paper is concerned with the effect of upper sideband

propagation on LSUC performance for the case where R. is the

only resistance in the upper sideband circuit. The study was

motivated by the desire to answer the following two questions

which arise in LSUC ch-cuit design.

1) Over what range of values of the upper sideband circuit

reactance XSS will the propagation of the upper sideband exert

a negligible effect upon the operating performance of an LSUC

which has been designed without considering the upper side-

band?

2) Propagation of the upper sideband is known to provide a

decrease in transducer power gain and in the gain sensitivity

to pump power variations; this reduction in gain sensitivity is

desirable for some applications. What is the extent of the

increase in noise figure resulting from this upper sideband


