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Fig. 11. Computed mode conversion of the 40-dB taper in the

vicinity of the cutoff frequency of the Hgs mode.

equations available, such an optimization has to be performed
numerically. This is no trivial problem because of the severe
constraint that, at least for manufacturing reasons, the slope
should be continuous and monotonic. Nevertheless, with
available computer programs for synthesis and analysis
combined, the design of tapers for any mode discrimination
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and ratios @s/a: can be accomplished in a short time if an
interactive operating mode is possible.

Designed with this method, various 40-dB tapers having a
small end diameter of 0.375 in and a large end diameter of
2.0 in were built. The Hg, level found in a preliminary test
agrees with the computed results and is below —40 dB. More-
over, it has been found that the mode conversion at cutoff
of the spurious mode does not show any anomalies.
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Calculation of Inductance of Finite-Length Strips

and its Variation with Frequency
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Abstract—The inductances of finite-length strips over a ground
plane are calculated by the Galerkin method. The formulation is in
terms of the quasi-static skin-effect equation. The numerical tech-
nique used is discussed and sample results are presented.
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1. INTRODUCTION

HE CALCULATION of inductance of finite-length
I conducting strips is currently of some interest. The
strips concerned, for example, could take the form of
interconnections between active and passive elements in
integrated circuits or alternatively guiding structures such as
microstrip lines in microwave integrated-circuit modules. In
general, semiempirical formulas of Grover [1] are used, but
these are not always satisfactory, nor are they compre-
hensive.
The capacitances associated with such structures have
been calculated by several authors [2]-[4] and use, among
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others, the moment method or a more generalized form of the
Galerkin method [5]. These calculations are based on the
assumption that the charge, a scalar quantity, is unknown and
can be approximated by an expansion in a trial function set.
Since the potential is known, the integral equation with the
Green’s function nray then be used to solve the problem. The
capacitance thus calculated is independent of frequency.

A similar technique, however, is not always applicable for
the inductance calculation. The current distribution is a vec-
tor and a function of frequency. The inductance decreases to
a limited extent with frequency, and any formulation should
take account of this variation. While the specific case of
high-frequency inductance is of interest to microwave engi-
neers for microstrip lines, the present paper considers the
more general formulation which evaluates inductance of
strips at any frequency of interest.

The integro-differential equation based on skin effect is
derived and the technique of numerical solution by the
Galerkin method is discussed. In the course of this work a
method for the choice of suitable basis functions, using the
generalized matrix inversion concept, was developed, and this
is also discussed briefly. A computer program was written for
the calculation of inductance of finite-length strips over a
ground plane and this corresponds to the case of microstrip
lines. It is known that the presence of the dielectric substrate
in these lines does not affect the longitudinal current distribu-
tion associated with the inductance [6], [7]. The paper con-
cludes with some numerical examples of the inductance of
finite-length strip lines over a ground plane.

Il. FoRMULATION OF PROBLEM

The problem is formulated in the orthodox quasi-static
skin-effect form [8], and hence leads to estimates of induc-
tance and inductance decrement with frequency. Retardation
effects are neglected. A typical case considered is shown in
Fig. 1, where w is the width of the strip and % the spacing to
the ground plane.

In general, the magnetic vector potential is given by

4= m,f GT dv (1)

where G is the Green’s function and is given by
1
G =
dmy/(x — 20)2 + (y — y0)* + (3 — 20)*

for nonmagnetic substrates.

7 is the current density distribution on the strip: the un-
known time-varying quantity.

For magnetic substrates, the Green's function would
require to take account of the images set up.

The electric field now is

@

where ¢ is the impressed voltage on the strip which causes
current to flow.
Also, from Ohm’s law,

J =oE (3)
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metal strip

non magnetic
substrate

ground piane. metal

Fig. 1. Typical geometry of strip analyzed. w=width of strip;

h=spacing to ground plane,

where ¢ is the strip conductivity. Substituting from (1) and
(3), (2) becomes

- o ..
J+Wgt—fGJ v = —aVe. (4)

This is the vector integro-differential skin-effect equation; its
scalar component parts are all formally identical. The un-
known current density distribution 7 is to be evaluated for a
given geometry and excitation ¢. When this is solved, the
inductance may be calculated from the following relation-

ships:
[a7av

[[7]

To solve (4), the homogeneous solutions for 7 with the
right-hand side set to zero, an eigenvalue problem, are
evaluated. Next, Laplace’s equation is solved for ¢ over the
strip or strips with the given terminal excitation, and sub-
sequently the unknown coefficients associated with the eigen-
modes of the homogeneous problem are evaluated for the
given excitation ¢, and hence known V¢. When the current
distribution is known, it is a simple matter to evaluate the
inductance.

LI (5)

I

I~ (6)

II1. METHOD OF NUMERICAL SOLUTION

For convenience, the thickness of the strip ¢ is assumed to
be small compared with skin depth at the highest frequency
of interest, and therefore variation of the currentin the thick-
ness may be neglected. The volume integrals hence become
surface integrals, and the surface become line integrals. The
notation of V and S is, however, retained. We also assume
that the strips lie in the planes defined by 2=constant, and
therefore the current density 7 is now a two-component vector
involving J, and J, only, related through the divergence
equation

aJ, adJ,
ox 3y

= 0. (N

Note that the divergence equation neglects the charge term
as only quasistatic conditions are considered. Further, the
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current J should satisfy the boundary conditions, i.e., the
normal componet of current must be zero at the strip edges.

Suppose a basis set of functions {{,} is obtained such that
each and every member satisfies (7) and the boundary condi-
tions. The current J now may be approximated by W which
is expanded in terms of this basis:

T~W = Zn: a:fe (8)
it

where a; are the unknown coefficients. Note that each com-
ponent of {{;} is a vector representing J, and Jy, and is a
function of x and ».

The approximation W is substituted in the homogeneous
equation obtained by setting the right-hand side of (4) to
zero. Taking the scalar product of this equation with {,

$ay -+ -, {n results in a set of equations of the form
2 az’(f G dv, ?k) = N 2 aifs By
=1 -1
k=1,2,---,n (9a)

where the scalar product is defined by

X,7) = f X.Tav. (9b)
This is a homogeneous equation and when the integrals
are evaluated results in a matrix eigenvalue of the form

Pa = \Qa. (9¢)
Both P and Q are symmetric positive-definite matrices.
Numerical evaluation of the eigenvalues and vectors may
then be performed by suitable algorithms.
Suppose the solution is given by

W =2 cil; (10)
i=1
where
{¢;} eigenvector set;
{\;} corresponding eigenvalue set;
¢; unknown coefficients associated with the ;.
Substituting (10) in (4) results in the following equation:
2. (1 + jouod)eil; = —o V. (11)

=1
The impressed voltage ¢ satisfies Laplace’s equation:
Vip =0

and hence is known for given terminal excitation.
To solve for ¢,, the scalar product of (10) is taken with the
eigenvectors ¥; to give

2o (1 4 jooun)cili, Ir) = —a({Vé, Ta),

i=1

k=1,2,---,m.
However, the §; form an orthogonal set, and hence

”‘T(V‘ﬁ: ‘I/J>

= - . (12)
(1 + jouok;) (s, ¥3)

Cj
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From this, the coefficients ¢;, which are complex, may be
evaluated, and therefore the current 7 is known. The stored
energy and the inductance may be calculated from (5) and

(6).
IV. CHOICE OF Basis FUNCTION SET

The double volumetric integrals of (9) require to be per-
formed over, say, L-shaped strips. One also has to contend
with singularities as a result of the three-dimensional Green's
function G. Spatial discretization of the strip or strips into
rectangular elements facilitates the evaluation of the integrals
and permits the elimination of the singularity [5]. Thus local
basis functions for the current density are defined over each
element (zero outside), and these have to satisfy the diver-
gence condition and the element boundary conditions.

The procedure followed here is based on the general
mathematical techniques published elsewhere [9], and the
results are outlined briefly. Suppose over any element the
current is expanded as

T>W = aJ, + a,J, (13)

where @, and @, are unit vectors in the x and y directions and

Js = Z pifi(x, )

Ty = 22 aifi(%,9) (19

where {f;} is the set of bivariate polynomials: 1, x, v, =2,
xy, ¥%, - -+, etc., complete to degree, say, #4e, and p; and g¢;
are the unknown coefficients.

Substituting these expansions in the divergence equation
(7) and equating coefficients of like polynomials, p; and ¢;
are related. From this relationship, the current may now be
expanded in terms of a modified basis {Z;}; each ;is a vector
and satisfies the divergence condition. It can be shown that
{€:} is given by

g B B B & & & &3 &

y % 0 v 2xy  «? 0,

J, 0 —1 0 —y —x 0 —9° —2xy

Therefore, the current may now be expanded as

T~W = Zbiéi (15)

where b; are the unknown coefficients. Note that in satisfy-
ing the divergence equation, the number of unknowns
per element has been reduced from (naeg+1)(#gegt2) to
(Maeg+ 1) (naeg+4) /2.

It is now necessary to impose boundary conditions on this
expansion of 7. Since local basis functions are used, inter-
element conditions require continuity of both components of
current, and at the strip edge the normal component is zero.
At the inflow and outflow edges no conditions are imposed at
this stage, as the necessary conditions are set by the right-
hand side of (4) by V¢.

The continuity of current is rigidly enforced at the com-
mon boundaries. If the basis set has the highest degree given
by #geg, then #gez+1 conditions specify the continuity of
each component entirely on any one boundary. Thus for
example, at the boundary between elements 1 and 2, the
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continuity of J, is ensured by

(Ry(Ja1 — J22)) = 0 (16a)

where R is given by 1, %, + -+, x™ez or by 1, 9, « - -, y™es,
if the boundary is parallel to the x or ¥ axis, respectively, and
the scalar product is defined by

l2

(4, B) = A-Bdl (16b)

4

The matrix equation thus obtained for the common bound-
aries may be rectangular or, if square, may have a rank less
than the number of unknowns. If, however, this is not the
case, the existing degrees of freedom have all been utilized in
satisfying these conditions, and therefore the problem re-
quires a larger number of trial functions. Using the concept
of weak generalized inverse (see the Appendix), a null vector
set can be obtained from the matrix equation, which set now
satisfies the common boundary conditions at the expense of a
reduction of the degrees of freedom. This null vector set is
now used as the new basis set for the expansion of 7.

The strip-edge boundary conditions are next imposed,
i.e., the normal component of current is zero, or in general,

BT = g. 17
This may be satisfied by minimizing the functional

F = (BW,W)— 2, W) (18)

where the inner product, defined in (16b), is carried out piece-
wise over the relevant boundaries and the minimization is
over the unknown coefficients of the basis set.

Since the operator B is not necessarily positive definite,
“minimization” of F by the usual method, i.e., setting
dF/ds;=0, S; are the unknown coefficients, will give a matrix
equation, the solution of which will not necessarily satisfy
boundary conditions. It then becomes necessary to examine
the diagonal of the matrix generated by the minimization
procedure and to eliminate those equations which do not
produce a true minimum, i.e., diagonal terms with zero or
negative values. An alternative is to specify a least-squares
fit which does not suffer from this difficulty. This takes the
form of minimizing

n= ”BW - gH’ (19)

For the currents at the strip edge, g is zero, the least-
squares minimization is easily imposed, and the null vector
set obtained as a solution of the resulting matrix equation
satisfies the edge conditions. Thus if the vector set which
satisfies common boundaries is used here, the new null set
satisfies both conditions, and also the divergence condition,
and forms the basis {{;}.

The formulation of the problem in the above form and its
subsequent numerical solution has the limitation that it re-
quires all the strip elements to be rectangles, and preferably
with sides parallel to the axes. As the method stands, it is
also not possible to evaluate the inductance of lengths of
strips connected to semi-infinite lines. However, it is expected
that this last limitation can be removed by the use of basis
functions defined on a semi-infinite strip and corresponding
modifications to the computer program.

on an L. norm.

V. NUMERICAL IMPLEMENTATION AND RESULTS

A computer program for the calculation of the inductance
of finite-length strip lines over a ground plane has been writ-

383

ten, and results obtained for two different geometries are
presented here.

A. Computational Sequence in the Calculation

The geometry of the problem and associated discretization
of the strips into rectangular elements, together with the
degree of polynomial of expansion functions, form the input
data to the computer program. The calculation of the in-
ductance may be divided into three parts: the solution of the
eigenproblem of (9), the solution of Laplace’s equation for the
impressed potential ¢, and, finally, the calculation of the
current distribution for the particular frequency, from (12),
and the estimation of inductance of the structure based on
(5) and (6). The computer program follows this sequence of
calculation.

The unknown current distribution is expanded in the
polynomial set of (15) and the interelement boundary condi-
tions, continuity of J, and Jy, are rigidly enforced by means
of equations of the form of (16) to give a matrix equation.
Using the generalized matrix inverse (see the Appendix), the
null set extracted from this matrix equation now is a combina-
tion of the original basis set, which satisfies the interelement
conditions. This null set is used as an expansion basis to
satisfy the homogeneous boundary conditions at the edge by
means of (19). Computationally, it is convenient to use the
original basis set in the homogeneous equation to setup the
matrix, and then post and premultiply the matrix thus ob-
tained by the null set and its transpose, respectively. The null
set extracted from this final matrix equation now satisfies all
boundary conditions, The inner-product line integrals in
these equations are evaluated by Gaussian quadrature, with
an adequate number of points. The null set finally obtained
above is used in the eigenproblem of (9), and, here also, the
original basis evaluates the matrices and subsequently these
are post and premultiplied by the null set to give the matrix
equation (9c). The integrals of (9) are also evaluated by
Gaussian quadrature in two dimensions, and the singularity
due to the Green’s function is eliminated by the technique
described elsewhere [5]. The evaluation of the eigenvalues
and vectors of (9¢) is by standard subroutines: reduction of Q
by Choleski decomposition to LL?, and the pre and post-
multiplication of P by L' and (LT)™%, respectively; the
Householder tridiagonalization of L~1PL~T, and the evalua-
tion of the eigenvalues by bisection using the Sturm se-
quence; and, finally, the evaluation of the eigenvectors by
iteration in the tridiagonal matrix and their subsequent
inverse Householder transformation and restoration to the
original matrix. The eigenvalues and vectors thus obtained
are stored.

The Laplace equation is next solved, discretized with the
same number of rectangular elements as above. Here, ¢ is
approximated in an expansion in the bivariate polynomial set
of (14) of degree one greater than used in the eigenproblem in
the expansion of the approximation for 7, as V& is then in the
same vector space as the approximation for 7. The interele-
ment boundary conditions are first specified (continuity of &,
and its normal derivative) and then the homogeneous condi-
tions (the Neumann condition d¢/dn) at the strip edge and
the end conditions are next imposed. The end conditions de-
termine the inflow and outflow of the current, and thus are
governed by geometry of the problem, but within these con-
straints may be arbitrary. The null set thus obtained is used
as the basis for ® in the minimization of the functional

Fi, = (V®, V®)
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Fig. 2. Variation of inductance with frequency for a straight strip of

length 2.0 m, w=1.0 m, w/h=1.0, ground plane k, p=1.721X107¢
Q-m, and o =1/p. Division into two rectangles.

where the inner product is defined by (9b). Since the Neu-
mann condition 3®/9# is “natural” to this functional and auto-
matically satisfied, this need not be imposed, nor is it neces-
sary to impose the continuity of the normal derivative of ®
at the interelement boundary.

With the results of these two parts of the program available,
the current distribution is evaluated through (12) at the fre-
quency of interest, and the stored energy integral of (5) is also
evaluated. Note that the matrix P in (9¢) is'the stored energy
integral in this method, and using the new known coefficients
(which will be complex, in general) of the current expansion
set, the evaluation involves just two (complex) matrix multi-
plications (premultiply P by the conjugate coefficient vector
and then postmultiply the resultant by the coefficient vector).
The current [ is then evaluated to give the inductance.

B. Examples

The first test problem considered a straight finite-length
line over a ground plane of length 2.0 units (meters) for a
width to height ratio (w/k) of 1.0. Fig. 2 shows the variation
of inductance with frequency. Since the strip thickness is as-
sumed to be small, the conductivity used is in mhos and equal
to the ratio of thickness to resistivity in (4). Changing ¢ (or
thickness) results in a frequency variation whose pattern re-
mains the same, but starts at a different frequency position,
and this is also illustrated in Fig. 2. Note that changing the
conductivity does not change the dc or high-frequency value
of inductance. These results were obtained with the line
divided into two rectangles. Increasing the number of
rectangles from two to four results in a very small change in
the resulte, as shown in Table 1. All these results were com-
puted with polynomials up to quadratics using Gauss-
Legendre three-point quadrature formulas for numerical
integration.

Increasing the line length from 2 units to 16 units for
w/k=1.0 shows the asymptotic approach of the calculated
high-frequency inductance to the infinite-length strip induc-
tance in Fig. 3. It is noted that this is rather slow, but
illustrates the physical behavior of the line. Other numerical
results on strips of different w/k have also been obtained, and
these will be discussed in Section V-C,

Calculations for a right-angle corner were also performed
for three values of w/k with different length arms. These were
obtained with a subdivision of the strip into eight rectangles
using expansions up to quadratic polynomials. The variation
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TABLE I

CoMPARISON OF CALCULALED INDUCTANCE OF A STRAIGHT STRIP OVER
GROUND PLANE D1vIDED INTO TWO AND FOUR RECTANGLES

Frequency Inductance in nanohenries
in Hz 2 rectangle subdivision 4 rectangle subdivision
0.0 633.24 636.64
1.0 633,24 636.64
5.0 633.24 636.63
10 633.22 636.62
15 633.20 636.59
10? 631.43 634.63
10 612.84 612.69
10* 610,53 608.47
10° 610.50 608.42

Note. w/h=1.0; w=1 m; length=2.0 m; p=1.721 X107 Q-m; strip
thickness = 10"% m; o=1¢/p; ground-plane spacing="#.

of the inductance with frequency is also obtained and shown
in Fig. 4 for w/k=1.0 and each arm of length 2.0. Table II
shows the variation of inductance with w/% and for two values
of arm lengths.

The computer program is capable of evaluating arbitrary-
shaped strips over a ground plane which can be subdivided
into rectangles up to a maximum of ten rectangles with quad-
ratic polynomials. The strips, however, require to lie in the
z=constant planes,

C. Comparison with Known Results

The inductance of finite straight lengths of a strip over a
ground plane can be estimated from Grover [1]. Table III
shows a comparison between our calculated dc values for a
length 8 m long, w=1.0 m, and three values of %£: 2.0, 1.0, and
0.5 m, corresponding to w/h ratios of 0.5, 1.0, and 2.0, with
those of Grover, and the discrepancy at worst is 1.8 percent.
No published data exist for the inductance of strips in the
form of L, but it is expected that the results are within 2-
percent accuracy.

VI. CONCLUSIONS

An integro-differential skin-effect formulation was used to
evaluate inductance of arbitrary-shaped finite-length con-
ducting strips over a ground plane. The comparison between
calculated and known results shows good agreement. The
computer program written in Fortran is capable of handling
up to a maximum of ten rectangular subdivisions with a quad-
ratic expansion basis. Other geometries of strips over ground
planes can also be examined with this program, provided only
that the strip or strips lie in z=constant planes and can be
subdivided into rectangular elements.

APPENDIX

Let A be an m X#n matrix of rank r. Gaussian elimination
of the elements of 4 is carried out with interchanges for rows
and columns as needed until only zero pivots remain. Then
matrix equation becomes

e[ 3]-[]-s o
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Fig. 4. Frequency variation of finite-length strip in the shape of an L
(right-angle bend). w=1.0; w/h=1.0; length of arms l,=2.0m.
Subdivision into eight rectangles; expansion polynomials up to

quadratics.
TABLE II
INDUCTANCE OF RIGHT-ANGLE BEND

w/h JLa inm Ld.c.in nH Lh.f. in nH

0.5 1.0 988.9 934.4
2.0 2037, 1960,

1.0 1.0 887,7 842.6
2.0 1778. 1710,

2.0 1.0 726.2 692.8
2.0 1408. 1347,

Note: w=1.0 m; length of arm=1,; Lq, is the total inductance at zero
frequency value; Ly¢ is the high frequency; ground-plane spacing = h.

Hence,
X1
fz =

U1_1L1“1f1 — UlﬂleXz
Lng_lfl. (21)
Therefore,

X = A*f+ Nz (22)

COMPARISON BETWEEN GROVER’S [1] DC INpucTANCE ESTIMATE AND
CALCULATED VALUES FOR A STRAIGHT FINITE-LENGTH STRIP
w=1.0 m OVER A GROUND-PLANE SPACING k

Inductance in nano-

w/h & Grover's result Henries calculated
by this method

1.0 2.0m 635.74 nH 636.6

1.0 8 m 3166.24 3211.

2.0 8 m 2319.52 2356,

0.5 8 m 3926.96 3969

where 4% and N are the row—column reinterchanged forms:

At = [Ul_lL]__l O:I N = l:“‘UlglU?.]
0 0 I

and n—r components of z are arbitrary.
The columns of the matrix N form a basis in the null space
of the matrix 4,.and matrix A satisfies the equations

AATA = A
ATAAT = 4T,

Hence, the first term of the right side of (22) specifies the
inhomogeneous solution of (20), while the second term pro-
vides all possible homogeneous solutions.
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Effect of Upper Sideband Impedance on a Lower
| Sideband Up-Converter

W. ALAN DAVIS ano PETER J. KHAN

Abstract—An analysis is given of a lower sideband up-converter
which includes a finite circuit reactance X at the upper sideband
frequency, in addition to the circuit impedances at the input signal
and output lower sideband frequencies.

The expressions developed for the gain, gain sensitivity fo pump
power variation, and noise figure show the extent to which gain and
gain sensitivity decrease, and noise figure increases when Xj; is
finite, as compared to the case when Xj; is infinite. For a simple cir-
cuit configuration the gain-bandwidth product changes markedly
when Xj; is small at the center frequency. In addition, when second-
harmonic pump power is allowed to flow through the varactor diode,
the performance of the lower sideband up-converter can be improved.

I. INTRODUCTION
THE lower sideband up-converter (LSUC) has been

shown to have significant advantages over the reflec-

tion-type amplifier for low-noise receiver applications
[1]. These advantages include a greater gain—bandwidth
product, reduced gain sensitivity to pump power variations
(at the expense of a very slight increase in noise figure and an
output at an elevated frequency which limits input to low
microwave frequencies), and elimination of the need for a
circulator, which is also advantageous in cryogenic or minia-
turized applications.

A significant problem in LSUC design has been the propa-
gation of the upper sideband frequency; this is usually unde-
sirable because power dissipation at this frequency in the
diode and in the circuit resistances gives rise to degenerative
feedback. A consequence is that the resulting induced positive
resistance in the signal circuit subtracts from the parametri-
cally generated negative resistance and reduces the gain.

Several authors have considered analytically the effect of
upper sideband propagation in an LSUC. However, in most
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cases these authors have used a representation of the reverse-
biased varactor-diode equivalent circuit consisting of a re-
sistance and a variable capacitance in parallel [2], [3] or a
lossless capacitance [4]. Although this simplifies the mathe-
matics considerably, it yields significant inaccuracy when
applied to multisideband circuits, since it leads to the errone-
ous conclusion that power dissipation in the diode can be
avoided at harmonic sideband frequencies by the presence of
a short circuit connected across the diode terminals. A more
accurate approach, based upon matrix manipulation, has
been used by Ernst [5] and by Howson and Smith [6], who
carry out a general analysis of a multiple-sideband parametric
network, using a diode representation consisting of a re-
sistance in series with the variable capacitance. However, the
work of Ernst is restricted to parametric amplifiers, while
Howson and Smith consider only the multisideband converter
having an output at the upper sideband frequency.

In most practical LSUC’s, the upper sideband and the
harmonic-sideband circuits consist of the diode series resis-
tance R, together with a reactance determined by the diode
mount structure and the position of the pump, signal input,
and lower sideband output filters. Loading of these sidebands
with any resistance other than that resulting from the diode,
transmission line, or filter losses is attainable only at the ex-
pense of considerable increase in circuit complexity.

This paper is concerned with the effect of upper sideband
propagation on LSUC performance for the case where R, is the
only resistance in the upper sideband circuit, The study was
motivated by the desire to answer the following two questions
which arise in LSUC circuit design.

1) Over whatrange of values of the upper sideband circuit
reactance Xa will the propagation of the upper sideband exert
a negligible effect upon the operating performance of an LSUC
which has been designed without considering the upper side-
band?

2) Propagation of the upper sideband is known to provide a
decrease in transducer power gain and in the gain sensitivity
to pump power variations; this reduction in gain sensitivity is
desirable for some applications. What is the extent of the
increase in noise figure resulting from this upper sideband



